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I. INTRODUCTION

This report documents a Fortran subroutine called CHEMEQ designed

to solve sets of ordinary differential equations of the form:

~dn.

dt i Q L n ()

Here Q is the formation rate, L.n. is the loss rate, and n is the

density of the ith species. Often the time constants I/L for the

various species differ by many orders of magnitude and strong coupling

between species may be present. If this is the case, the set of equa-

tions (1) is considered "stiff" and does not lend itself readily to

numerical solution by classical methods.

Subroutine CHEMEQ was developed to apply a specialized numerical

technique "The Selected Asymptotic Integration Method"(SAIM) to this

class of equations. The method has a very low computational overhead

associated with it and is particularly useful when combined with a

transport algorithm such as the "Flux Corrected Transport' module to

form reactive flow models. In such applications computer memory is at

a premium because copies of the chemical species variables are required

at every grid point. Since CHEMEQ is a single-step algorithm, multiple

copies of the data from several successive timesteps need not be saved.

Further, since CHEMEQ is implo- and single-step, no start-up penalty

such as evaluating a large Jacobian matrix is exacted at the beginning

of an integration stop. This is also very important because a reactive

flow application requires millions of chemistry integration start-ups.

Note: Manuscript stibmittd August 1.1, 1979.



Whenever the hydrodynamic processes in the problem change the vari-

ables, the chemistry calculations must be reinitialized.

The efficiency of CHEMEQ is achieved by limiting the actual inte-

gration to second-order accuracy to minimize auxiliary storage and

start-up expense. In reactive flow applications, however, the reaction

rates are seldom known to better than 10% and the hydrodynamics calcu-

lations are seldom accurate to better than 1%. Thus integration of

the chemistry to better than 1 part in 103 or 104 is an expensive folly.

In this regime CHEMEQ seems to beat the classical methods by about a

factor of 50-100 in speed on test problems where start-up is not a

consideration. When a coupled hydro application on many grid points

is attempted using a parallel processor, up to three orders of magni-

tude improvement seems possible.

The SAIM method has been applied successfully to such reactive

flow problems as high altitude nuclear burst phenomena,3 ,4 the solar-

induced ionosphere, 5 laser-generated plasma interactions, 6 and the

chemical kinetics associated with combustion7 problems. It has also

been used successfully for chemical model development, particle

deposition in the ionosphere, 8 and other physical problems where stiff

ordinary differential equations arise.

The subroutine CHEMEQ is written in simple standard Fortran but

makes extensive use of the pipeline architecture of the NRL Texas

Instruments, Advanced Scientific Computer (ASC). The subroutine is

easily adapted to other machines without loss of efficiency.

A new subroutine is being prepared called VSAIM (Vectorized Selec-

ted Asymptotic Integration Method). This subroutine applies the
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asymptotic method used in CHEMEQ to several independent sets of

equations (i.e., grid points) simultaneously, and thereby it takes

full advantage of the parallel processing capability of the ASC. This

subroutine is particularly useful for solving the chemical kinetics

associated with hydrodynamic applications on computers that have

parallel processing capabilities. VSAIM will be documented in a

subsequent report.

Sections II and Ill describe the algorithm and its implementation.

Appendix A describes the application of CHEMEQ to various problems.

Appendix B gives the fortran listing of the subroutine together with

tables of internal and argument list variable definitions. Appendix C

gives the results of a sample atmospheric test problem using CHEMEQ

together with program listings which illustrate the application of

CHEMEQ.

II. ALGORITM

CHEMEQ integrates a set of coupled ordinary differential equations

(which may include "stiff" terms) of the form (1) by a one-step algo-

rithm. The method has very low overhead since all that is required to

start a new integration step are the current values of the variables

and the derivatives. A second order predictor-corrector method, which

takes special notice of those equations determined at the beginning of

the step to be stiff is employed to continue the integration process.

The asymptotic integration method applied to the stiff equations

best treats the situation where the solution is slowly changing or

nearly asymptotic yet the time constants are prohibitively small.

3



This occurs when the formation rates and loss rates are large, nearly

equal, and there is strong coupling between the equations. Thus the

stiff equations are treated with a very stable method which damps out

the small oscillations caused by the very small time constants. If,

however, the formation rates and loss rates are small compared to the

function size, the simple classical methods can be utilized for these

equations to give the combined method.

The predictor-corrector algorithm provides enough information to

choose the subsequent timestep size once convergence has been achieved.

For efficiency an initial timestep is chosen which approximates the

timestep that will be determined after convergence of the predictor-

corrector scheme. This initial trial timestep is chosen independently

of the stiffness criterion and is determined such that none of the

variables will change by more than a prescribed amount. If the forma-

tion rate is much larger than the loss rate, it is reasonable to assume

that Qi and L. will remain relatively constant for large changes in n..

Often the initial change in n. may be large enough to equilibrate the
1

formation and loss rates. Thus the initial trial timestep is chosen

in two ways as follows;

6t = C min[n /i, or (if Q.>> Lini)l/LiJ (2)

Here C is a scale factor, the same value as the convergence criterion

described in Eq. (6). The minimum is taken over the whole set of

equations. The timestep chosen by Eq. (2) may be larger than some or

4



all of the equilibration times, in which case the corresponding equa-

tions would be classified as stiff. Nevertheless, when solved by the

asymptotic method, this timestep ensures that accuracy can be main-

tained. When a stiff equation is close to equilibrium, the changes in

the functional values over the timestep will be small even though the

adjustment rate toward equilibrium can be very much shorter than the

timestep. When the stiff equation is far from a dynamic equilibrium,

the timestep should be scaled down proportionally to the equilibration

time to ensure that the transition to equilibrium will be followed

accurately. This readjustment, because of the very fast rate, gener-

ally takes place very rapidly after which much longer timesteps may be

taken.

After a timestep has been chosen, all of the equations are sepa-

rated into two classes, stiff and normal, according to the criterion.

L.T < 1 Normal

or (3)

L.T a 1 Stiff

where the value of i is problem-dependent and is chosen by the user to

invoke asymptotic treatment as necessary. In addition, the user may

force asymptotic treatment on any percentage of the set. Equation (3)

is applied first. Then, beginning with the equations with the shortest

characteristic time (1/Li) not alr.oady chosen by application of

equation (3), additional equations are selected with increasing time

5



constants until the percentage of the set specified is satisfied. If

the equation is considered stiff at the start of the integration step,

it is treated as stiff until the step has been completed. The two

types of equations are then integrated by separate predictor-corrector

schemes but using a simple asymptotic formula to replace the usual

second-order corrector equation for all those equations which were

determined to be stiff.

The predictor part of the step is performed as follows:

n.(l) = n.(O) + 6tF.(O) (Normal)

and (4)
6tF. (o)

n.(l) = n.(0) + I (Stiff)
1 1 l+6tL. (0)

1

where F.(0) Fi[t(0), ni(0) ]. Here we start at t = t(0) and wish to

find ni[t(0) + 6t] -n. (1).
1

If we let the integer in the parentheses denote the iteration

number then n (k) is the kth iterated value of n, or an approximation
1 1

to n. it(0) + 6t]. The zeroth iteration, n. (0), is the initial value1 1

at t(0) and n (1) is the result of the predictor step. Also note that
1

F. (k) - F [t(O)+5t, n. k)] for the derivatives. The corrector formulas
1 1

for the two types of equations are:

n. (k+l) n (0) + -- [F (0) + F. (k) ] (Normal)
1 1 2 i 1

and (5)
26 t[Qi (k)-L. (0)n, (0)+F. (0)

n. (k+l) = n (0) + (Stiff)
1 1 4 + 6t[Li (k)+Li (0)]

6
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By comparing n. (k+l) with n. (k) on successive iterations using

the relative error criterion E to satisfy the following equation,

1 In. (k+l) - n (k) (
~~max (k+)E(6)

the convergence of each of the individual equations can be determined.

As applied in CHEMEQ, E is typically , 10- 3 and if the formation and

loss rates are nearly equal o will be scaled down slightly. This

allows quicker convergence for equations that are nearly in equilibrium.

In practice n. is constrained by a minimum value when n* is decay-2. i

ing exponentially toward zero. This lower bound is chosen by the user

and must be carefully selected to insure that its value in no way

affects the physics but yet decouples the equation from accurate inte-

gration. Decoupling is accomplished by skipping the application of

equation (6) to all equations that have decayed to values correspon-

ding to their lower bounds. Convergence for these equations is then

trivial and the function no longer affects the size of the timestep.

For equations that are decaying exponentially to zero with time

constants that are small enough to control the timestep,it is important

for efficiency reasons to decouple these equations at the largest lower

bound possible. However, it must be remembered that spurious results

may occur in other equations sensitive to the limited equations if

their lower bounds are too large. This results because the value of

the function after decoupling is frozen at the lower bound for the dura-

tion of the integration process or until the total rate becomes posi-

tive. If there is any question, it is better to be on the conservative
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side by choosing the minimum values smaller than necessary. This may

result in a little loss of efficiency but will reduce the possibility

of erroneous results.

We have found that maximum speed is realized by keeping the

allowed number of iterations on the corrector small. We typically use

one or two. If satisfactory convergence of all equations has not been

obtained before or during the last iteration, the step is started over

with a smaller timestep. By keeping the maximum number of iterations

small, a minimum amount of time is wasted on an unstable or nonconver-

gent step only to find out that the iteration procedure did not con-

verge. By the same token, we have found it best to reduce the time-

step sharply (a factor of 2 or 3) when nonconvergence is encountered

rather than to reduce it slowly. Less time is wasted this way getting

down to a sufficiently small step for convergence if the initial esti-

mated step size is found to be too large. On the other hand, when

increasing the timestep, as for example when convergence is achieved

on the first or second iteration, we have found it best to only in-

crease by 5-10% each step. During the integration of several succes-

sive steps, we use the appropriately modified timestep from one con-

verged integration cycle as the trial timestep for the next integra-

tion cycle rather than using Eq. 2. The timestep modification is per-

formed as follows

6t [ + .005] (7)
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Using o as the starting value, the is estimated with three

iterations of Newton's method. This gives the desired asymmetrical

property in that 6t decreases faster than 6t would increase for the

inverse value of a. In addition, 6t is modified very little when 3 is

near 1.

Once convergence of all the equations is achieved, the new values

of the n.I(6t) are set equal to the values of n k(k+l). One can obtain

convergence and completion of an integration step after only two deri-

vative-function evaluations even when some or all of the equations are

stiff.

III. HOW TO USE CHEMEQ

The Selected Asymptotic Integration Algorithm, as described in

Section II, has been coded in Fortran which may be implemented on any

digital computer of moderate size. It is intended as a very fast but

moderately accurate integrator which can be used at each grid point of

a large hydro- or magnetohydrodynamic calculation. Single point calcu-

lations are easily and efficiently accomplished by CHEMEQ as well.

CHEMEQ has four entries which are available to perform the vari-

ous aspects of the integration. The main entry is used for normal

operation. The others provide flexibility and optional controls. The

variables in the argument lists and internal variables are documented

in detail in Appendix B.

1. CHEMEQ (DTCHEM, DFE, N, F, FMIN) advances the equations the

specified interval DTCHEM.

9
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2. CHEMSP (EPSMN, EPSMX, DTMN, TNOT, PASS, TASS, PRT) resets

the specified control parameters if the default values are not

satisfactory.

3. CHEMCT (TMK) is for information purposes. This entry prints

information which indicates how efficiently the integration pro-

cess has been since either the last call to CHEMSP or the last

call to CHEMCT.

4. CHEMPR is for diagnostic purposes. This entry may be called

whenever an error occurs which can be attributed to the results of

CHEMEQ. A partial set of the internal variables is printed as a

diagnostic.

CHEMEQ is the main entry and is called to advance the equations

as required. The initial values are passed in as arguments. After

being advanced by the integration they are passed back in the same

place. One of the arguments of CHEMEQ is the name of the derivative

function subroutine DFE, utilizing a useful feature of Fortran which

gives the user the option of specifying various configurations for the

derivative functions within the confines of the same problem.

CHEIMSP is called whenever any or all the default values of the

control parameters in the argument list are not satisfactory. Vari-

ables such as the initial value of the independent variable, the

absolute minimum timestep allowed, control parameters for convergence

of the predictor-corrector combination, and the control parameters

which affect the use of asymptotics may be reset here.

CHEMCT is called for diariot ic u u, o:;es. It displays information

'" - a



on the numbers of derivative function evaluator calls and the number

of times asymptotics were employed. It also gives the number of times

the integration step had to be restarted with a smaller timestep due

-- .. to lack of convergence of the predictor-corrector scheme since the

last call to CHEMCT, CHEMSP, or since the beginning. This information

can be very helpful in determining the relative efficiency of the

integration process.

CHEMPR is called for diagnostic purposes. If an error in the

integration process is suspected, the user may call this entry to

print out some of the internal variables. The current values of the

production rates [C(I)], loss rates [D(l)], functions LF(I)], inverse

time constants [RTAU(I)], total rates LCMD], estimated timestep re-

quired, from the previous step the total rates LDFS(I)j, the functional

values [FS(I) j, the initial functional values [FO(I) j and the minimum
- !

values [FMIN(I)] are printed for diagnostic purposes.

Two subroutines are referenced from CHEMEQ.

1. DFE(F, C, D, T) The Derivative Function Evaluator which cal-

culates the derivatives {'.j as required.: 1

2. CHEMER in the subroutine that is called whenever CHEMEQ deter-

mines that an error has occurred.

DFE, the derivative function evaluator, must be supplied by the

user to provide on request by the integrator, the current derivatives

{n }. It is important to note that nearly all of the computer timni

spent in the integration process for most problems iz; spent in this

user-supplied routine. It is therefore ,-x,me? valuable to put the

11



extra effort into optimizing this routine, especially, when it will

be incorporated into a large hydrodynamic code. Here are some sugges-

tions for coding which may help produce efficient operation.

1. Avoid all unnecessary repetitive calculations. Quantities

which can be calculated once should be stored for subsequent use.

In particular, divisions and mathematical functions should be

avoided since these are costly operations on most machines.

2. Replace all complicated functions with table look-ups when-

ever possible. This can be a very important economy measure.

3. Arrange the code in a fashion which takes advantage of your

computer's optimization features. For example, the use of

register to register or parallel processing capabilities.

4. The user may often take advantage of the structure of the

problem he is working with.

For example, in a large atmospheric reactive-flow hydrodynamic code,

the density values may vary drastically from the bottom of the grid

to the top. Often at the top a much simpler reaction scheme will be

sufficient to describe the chemistry than in the middle or lower por-

tions of the mesh. Here the user may specify various configurations

of the reaction scheme appropriate to the grid region and save a sig-

nificant amount of computation. There are other ways to improve effi-

ciency but they may niot be as obvious as these listed. Often with a

little imagination and persistence combined with a thorough knowledge

of the problem area, significant improvements in computational

efficiency can be realized.

12



CHEMER is called whenever CHEMEQ determines that a severe error

has occurred. Currently the only error which can be identified by

CHEMEQ is when the timestep becomes too small. CHEMEQ at this point

provides output that may be useful and then calls CHEMER. The default

version of CHEMER does nothing but print a message indicating that

CHEMER has been called and then stops execution. However, the user may

supply his own version of CHEMER which could provide printout of

much more complete set of diagnostics than CHEMEQ does or manipulatv

the data in such a fashion that the integration process might proceed.

The actual arguments and internal variables used in CHEM.DEQ, its

entries and the associated subroutines will be described in detail in

the appendix sections of this report.

IV. SUMMARY

CHEMEQ is intended to be a general purpose integrator for a

specific type of equations. It employs a very low-overhead, moder-

ately accurate, low-order technique. To obtain results for most

physical models with an acceptable degree of accuracy, CHEMEQ can be

extremely efficient. In many areas where problems arc so computation-

ally expensive they seem impossible to do by other methods, CHEMEQ

gives accurate results in a reasonable amount of time. CHEMEQ can

also be employed in the development of chemical or mathematical models

when efficiency is not so important, but the user should not expect

eight figures of accuracy. Two or three figures over a long integra-

tion is a more realistic estimate. CHEMEQ's forte lies in the solu-

tion of the stiff ordinary differential equations associated with

13
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chemically reactive flow problems. Here the reaction rates are split

off from the hydrodynamic part of the equations and solved separately

for each hydrodynamic timestep and at each grid point. The moderate

accuracy of the methods used to solve the hydrodynamic equations

suggest that the application of a more sophisticated tuchnique, rather

than a low-order, low-overhead method like CHEMEQ, would waste valu-

able computer time and could possibly render the problem so computa-

tionally inefficient that it would be impractical to pursue.

A potential user must be aware that CHEMEQ is not user-proof,

problem-independent and can not always be used as a black box. The

method is not identially conservative for arbitrarily large timesteps

when asymptotics are employed and the minimum values should be chosen

: "with some thought since they can become sources of spurious errors if

not chosen small enough initially.

IAll methods, such as the selected asymptotic integration method.

which do not conserve particle density or charge balance automati-

cally may be forced to do so by at least two techniques. In one tech-

nique, conservation can be restored by adding the various concentrations

to find the errors and then by distributing these errors throughout the

densities in a number-conserving manner. The major fault with this is

that a portion of the errors is incorporated into concentrations from

which the errors may not have arisen. The second and better method is

to reduce the frequency of the asymptotic treatment or decrease the

timestep size to the point where errors due to nonconservation are

within tolerable limits. Significant improvement in computational

14



f efficiency still results.

CHEMEQ is written in standard Fortran and should be easily adapt-

able to any computer that accepts Fortran. Although the present ver-

sion is written in a fashion that promotes vectorization by the ASC,

no special features of the ASC Fortran were incorporated into the code.

The storage requirements of CHEMEQ are proportional to the maxi-

mum number of equations for which storage has been reserved. For a

maximum of 25 equations CHEMEQ requires about 2000 words of memory

on the ASC.

Since CHEMEQ uses a convergence-dependent algorithm and an adap-

tive timestep, the overall timing will be strictly problem-dependent.

It will depend on such things as the coupling between and relaxation

times of the equations. As mentioned before, most of the integration

time will be spent in the derivative function evaluations of which

there are at least two required per CHEMEQ call. At least 50 psec of

ASC CPU time are required as integrator overhead per integration step

per equation. This does not count the time required to evaluate the

derivatives.

If CHEMEQ is applied as intended, the subroutine can solve large

systems of stiff ordinary differential equations more efficiently than

methods currently available. In some cases, its efficiency is un-

rivaled.

15



ACKNOWLEDGMENTS

I would like to acknowledge Jay Boris' contributions in the

development of the selected asymptotic integration method. His

penetrating insights into this problem have been invaluable in the

development of this technique over the past few years.

This research was originally begun under Defense Nuclear Agency

support and completed under CND Directed Funded programs through the

Naval Material Command under project ZF-43-451-001.

REFERENCES

1. T. R. Young and J. P. Boris,"A Numerical Technique for Solving

Stiff Ordinary Differential Equations Associated with the Chemical

Kinetics of Reactive-Flow Problems." J. Physical Chemistry, 81,

2424 (1977).

2. J. P. Boris,"Flux-Corrected Transport Modules for Solving General-

ized Continuity Equations"and references therein, NRL Memorandum

Report No. 3237 (1976).

3. J. P. Boris, B. E. McDonald, T. P. Coffey, and T. R. Young, Pro-

ceedings of the DNA High Altitude Nuclear Effects Symposium, Vol. 2

DASIAC SR-130 (DEC. 1971).

4. J. P. Boris, Proceedings of the 2nd European Conference on

Computational Physics.

5. E. S. Oran, T. R. Young, D. V. Anderson, T. P. Coffey, and P. C.

Kepple, A. W. Ali, and D. F. Strobel,"A Numerical Model of the

Mid-Latitude Ionosphere;' NRL Memorandum Report No. 2839 (1974).

16



6. K. G. Whitney and J. Davis,"Hot-Spot Model of K-Line Emission

from Laser-Heated Plasmas,"J. Applied Physics, Vol. 45, No. 12,

pp 5294-5302, (Dec. 1974).

7. Elaine Oran, Theodore Young, and Jay Boris,"Application of Time-

Dependent Numerical Methods to the Description of Reactive Shocks,"

submitted for publication in the Seventeenth Symposium (Inter-

national) on Combustion (Aug. 1978).

8. E. S. Oran, and D. J. Strickland,"Photo-Electron Flux in the

Earth's Ionosphere,"Planet, Space Sci. Vol. 26 (1978).

1

17



APPENDIX A

Table Al. Logical Sequence of Calls for Chemical Kinetics

Without Transport

Ca-culate initial conditions, control parameters, etc.

k -- t loop over timesteps:

CALL CHEMSP Call only to change default values
of control parameters.

CALL CHEMEQ Advance rate equations one timestep.

Print diagnostics as needed.

-- End loop on timesteps.

END when loop over timesteps is complete.

18



Table A2. Logical Sequence of Calls for Chemical Kinetics and

Transport Combined

Ca culate initial conditions, grid, control parameters, etc.

rt loop over hydro timesteps:

Intoke transport algorithm

tart loop over grid points:

L CHEMSP Call only to change default values
of control parameters.

I CHEMEQ Advance rate equations at each grid
point one hydro timestep.

(-F- loop on grid points.

Print diagnostics as needed.

'I
-End loop on hydro timesteps.

Elwhen loop over hydro timesteps is complete.
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APPENDIX B

LISTING OF CHEMEQ

SUBROUTINE CPEPEOCOTCHEM, DFEv N, F, FMIN)
C
C

Co
Cc CHEMEG (DTCHEM, DFE. N, F, FPIN)
CO
Co ORIGINATORS: T.R. YOUNG AND J.P. BORI$ NRL 1 971
Co
CD CESCRIPTION. CHEMEG I A SUBROUTINE HICH SOLVES A CLASS OF
CO ORDINARY DIFFERENTIAL EGUATIONS TERMED STIFF. THESE EQUATIONS
Co CANNCT BE READILY SOLVED BY THE STANDARD CLASSICAL METHODS THUS
CD THE SELECTEO ASYMPTOTIC INTEGRATION METHOD IS EPPLOYED BY CHEMEG.
Co TOE EQUATIONS ARE DIVICEC INTO TWO CATAGORIES BASED ON
CD EQUILIBRATION TIMES AND ARE INTEGRATED BY EITHER A LOW ORCER
CO CLASSICAL METHOD FOR THE EGUATIONS WOICH HAVE LONG EGUILIBRATION
CO TIMES OR A VERy STABLE STEP-CENTERED METHOD WHICH HELPS
CO PRESERVE THE ASYMPTOTIC NATURE OF THE SOLUTIONS WHEN
CD EOUILIBRATION TIMES ARE VERY SHORT. AN ADAPTIVE STEPSIZE IS
CD CHOSEN TO GIVE ACCURATE RESULTS FOR THE FASTEST CHANGING GUANTITY.

CD THE ROUTINE ASSUMES THAT ALL OF THE INTEGRATED CUANTITES AND THE
CD TIME STEP ARE POSITIVE.
CD
CO ARGUPENT LIST CEFINITION:
CO CTCPEW REAL#4 THE INTERVAL OF INTEGRATION OR THE I
CO RANGE OF ThE INDEPENDENT VARIABLE.
CO 0.0 4n T ga DTCHEm.
CO OFE REAL*4 THE NAME OF THE DERIVITIVE FUNCTION I
CO EVALUATMR SUBROUTINE.
CO N INTEGER THE NUMBER OF EQUATIONS TO BE I
Co INTEGRATED. AN ERROR EXISIS IF N IS
CO GREATER THAN NO SET BY THE PARAMETER
CO STATEMENT.
CO F(N) REAL*I THE INITIAL VALUES AT CALL TIME I/O
CO AND THE FINAL VALUES AT RETURN TIME,
CO FMIN(N) REAL*U MINIMUM VALUES FOR EACH FUNCTION. I
CO
CO LANGLAGE AND LIPITATIONS: ALTHOUGH THIS SUBROUTINE IS WRITTEN IN

CO A FASHION WHICH PROMOTES VECTORIZATION BY THE ASC COMPILER, THE
CO FORTRAN IS NEARLY STANCARD AND SHOULD 4ORK WITH MINOR OOCIFICAT-
CO IMNS ON ANY PACHINE,
CD
CO ENTRY POINTS FOUR ENTRY POINTS ARE PROVIDED FOR FLEXIBILITY AND

CO OPTIPUM CONTrOL.CO

CO CMEPEGi ACVANCES THE EGUATIONS THE GIVEN INCREMENT 'DTCHEM'.
CD
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CC CHEPCTt INFCRPATrvE. PRINTS ti-C VALUES OF TH4E INDICATIVE
cc CONTERS LISTED 9ELOkWJ
CD 1. TI-E NUMBER OF TIMES ASYPPTeTICS iNERE USED.
CO 2. TI-C NUMBER OF DERIVATIVE FLNCTIC& EVALLATIONS.
Co 3. ?i-E NUMBER TIMES THE INTEGRATION STEP %AS RESTARTEC
Co OLE TO NONCONVERGENCE IF TI-E PREDICTeR-CIRRECTMR
Co SCHEME.
Co
CO CHEPSPj PReVICES THE LSER WITI. THE OPTION TO RESET THE i-OST
CD TIPCPTANT CONTROL PARAP'ETERS.
Co
CO CHEPPRs INFCRPATIVE, PRINTS OLT INTERNAL VARIABLES FMR CIAGNOSTIC
CD PUPOSES.
CO
Co SUBROUTINES REFERENCE'
cc
CO CFEI WHOSE ACTUAL NAPE AND DEFINITION ARE SUPPLrED BY THE USER
C., IS CALLED TO OBTAIN TI-C DERIVITIVE FUNCTIONS.
CDC
Co CALL DFE(Fo C, C, T)
cc ARGPGUEPT LIST TO CFEU
cc F(N) RE AL*'A CURRENT VALLES OF THE DEPENDENT I
Co VARIAPRLE.
cc C(N) REAL*'a CALCULATED FORV'ATION RATES. 0
cO c(N) REAL*a CALCULATED LOSS RATES. a
cc T REAL*'j CURRENT VALLE OF THE INDEPENCENT I
CD VArAeLE.
co
CD CHEPERi IS CALLED WHENEVER AN ERROR IS DETECTED. CURRENTLY THE
Cn ONLY ERROR RECOGNIZEC IS A TImE STEP THAT IS TOO SMALL.
cc
CD CALL CHE1FER
Co ARGUMENT LIST TO CHEPERI NO ARGUMENTS.
CD
CD*
C

PARAMETER NC u150
C

RFAL*8 TS, TN
C

REAL F(N/NCDi)* FPIN(N/NC/), CCNr), DCND), RTAL'SCNC)
REAL FS(ND), DFS(NC), Fo(ND), SCRA(ND), SCRE(ND), RTAU(C'D)
REAL ASY(ND)g CeA(KD)

C
INTEGER FCOUNT, ACOLNT, RCOUNT, TFCNTo TACNT, TRC14T

C
CATA FCOUNT, ACOUNTo RCOUNT, TFCNT, TACNT, TRCt4T,'60/
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DATA PASYI/O.00/i TCRASY/100.l/, NDC/KD/, EPSCL/100.C/
DATA TFC/Z'J1lOOOCei, DTt'IN/1.OE-15/# SGREPS/0.50/
DATA TSTART, DT, DTTEST/3*0.0/, TN/0.OD4oC/, C/ND*O.0/
CATO EFSMAX/10.0j, LO/*t#, EPS1'IN/i.OE-02/, C/'ND*0*Qi

C
C TEI'PERARY FIX: SEE DO LOOP 13C IIII

DATA SIGNM,'ZeOOOOOOO/
C
C CHECH INPUT PAFAMETERS.

IF(N .LE, NCD)GO TO 110
ORITECLO, 1002) N, NOD

t102 FORPATCS(l),' FROM -CHEJ'EG. I NO. OF EG.S REQUESTED IS TOO',
1LARGEid' REQUESTED (.5',MAX. ALLOWED (.5''

STOP
C
C INITIALIZE THE CONTROL PARAMETERS.

110 TN a O.OD+CO
CTTARG x DYCHE'

C
c STORE AND LIPIT TO IFMINI THE INITIAL VALUES.

CO I I a to N
C CI 1 0.0
C CI 1 0.0
FOCI) UF(I)

I Ff1) I APAXI(FCI), FPIK(l))
C
C EVALLATE THE CERIVITIVES OF THE INITIAL VALLES,

CALL DFE(Fp C, Of SNGLCTN i TSTART)lt
FCOUNT s FCOUNT + I

C
C ESTIMAIE THE INITIAL SlEPSIZE.
C
C STRONGLY INCREASING FUNCTIONSCC ob) D ASSUPED HERE) USE A STEP-
C SIZE ESTIMATE PROPORTIONAL TO THE STEP NEEDED FOR THE FUNCTION TO
C REACP EGUILIERILM WHERE AS FUNCTIONS DECREASING OR IN EQLILIBRILM
C LSE A STEPSIZE ESTIMATE DIRECTLY PROPORTIONAL TO THE CHARACTER-
C ISTIC STEPSIZE OF THE FUNCTION. CONVERGENCE OF THE INTEGRATION
C SCHEME IS LINELY SINCE THE SMALLEST ESTIMATE IS CHOSEN FOR THE
C INITIAL STEPSIZE.

SCRTCH s .OE-4J0
DO 15 1It1 N
SCRAMI l .*EPSVIK*A8SCCCI)) - CCI)
SCAO(!) *SIGNCI.O/F(I)i SCRAM)
SCRACI) & CRB(I)*D(I)
SCROCI) 8 -ABS(ABS(C(I)) - CI))*SCROCI)
SCRACI) a APAX1CSCPA(I)o SCRB(I))

Is $CATCH AMAXI(SCRA(I, SCRTCH)
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CT a SOREP31SCRTCH
IFCDT *LT, TCRASY)CT a SOR7CDT*TCRASY)
ZF(OT *GT, DTCHEM)CT a DTCH-EM

C
C THE STARTING VALUES ARE STORED.

100 TS a TN
C
C ASSIGN ASYFPTOTIC OR NORMAL TREATMENT FOR EACH EGUATION AT THE
C MEINING OF EACH STEP,

NASY 0 ACOUNT
C
C EQUATIONS WITH TOO SHORT A CHARACTERISTIC STEPSIZE ARE SELECTED
C FOR ASYMPTOTIC TREATMENT,

CO 130 1 w 1,N
FYAUCI) 'I CCI)/F(I)
FScI) x F(I)
CFS(I) m CCI) - DCI)
SCRACI)a .u TAU(I) - TCRASY

C
C THE FOLLOWING TWO CARDS REPLACE THE THIRD WHI1CH DOES NOT COMPILE
C PROPERLY ON;NX * 5.027,13q,,

SCRBCX) 3AND(SIGNP, SCRAMI)
ASyCI) a e~5 + OR(.5, SCRBCI))

C ASYCI) x w5 + SIGNC.5o SCRAMI)
COR(I) a DFSCI) - Ct)*ASYCI)
RTAUSCI) a PTAU(I)*ASYCI)

130 ACOUNT a ACOUNT *ASY(I)
NASY a PASYIaN -ACeU.NT 4 NASY
IF(NASY .LT. 1)GO TO 101

C
C COMPLETE THE SELECTION OF EQUATIONS FOR ASYMPTOTIC TREATFENT LP TO
C THE PERCENTAGE 'PASYI'. EQUATIONS WITH THE SHORTEST CNARACTERIS71C
C STEPSIZES ARE CHOSEN FIRST.

CO 20 1 a 1.NASY
FTPX a *1.CE+70
CO 3S J- a 1N
IF(ASVCI) .GT. O.I)GO TO 35
IFCRTMX *GT. RTALCj))GO TO 35
FTPX v RTAL(J)
J5 a J

35 CONTINUE 4
ASYCJS) a 1.0
RTAUSCJS) ,s RTAUCJS)
COR(JS) aCOR(JS) - CCJS)

20 ACOUNT aACOUNT + I
C
C FINC THE PREDICTOR TERMS.
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C
C 7 , FIRST tp~ rqDVO F.4 THE ASY!'FTITIC f t..CTV,'lS FEDIL CF
C EULLF''S I'ETH~r FCP TH~E NCt2ASY" 4FT',TIC FLNCTzoVS Ir "RTAr2' ).n.

SCPP~(I) a CFS(I)/(1.c DT*PTALSc!))
SE NT I HLF

C
C LIPIT crcPEAz IrG FL~jCT1'tS TO Tt-E IR ThU VALL.ES.

c 1 5 1 I N
eCFP(I) --FS(!) t CT*SCPC-fI)

105 FCI) cA! AW(SCREMI, FM'It.CI)
IN -- S i CT

C
C EVALLATE TH'E rERIVITIVES FNR T E CIRPECT ,.

CALL r)r7F Co f,, St-GWI-r j !STAPT))
FC!U:.T z FCUN I
EPS .Fl
C C xx t

C
c STEP CEK.TEREC CARRECTmP FOR THE ASY'1''I'IC FLNCTIM'S PEPLCES 71
C TI-C !Fr.~ ELLER IET -OC F R T-C 1,hAYS'PT"T IC Ft. :rjT, 'S.

P TA L '(I) 3 SZR(I)/FMI
4 SrP() a(COP(I * CCI) + SCRPM -"(I

-. * ~(2.0 + .5*CT*(PTAL(I) * rzTAL1JS(I)))

C CALCLLA'E tE F, CHECK F R Cl%;FPGE CE, ANCL LIHIT D.FCRLAS114G
C Ft.hCTT! 5. TI-E !RDEP 'IF THE crFEIRATIOV;S V TP-15 L~ 1S IPPCRTAN.T.

SCUPMI A"AWI(FS(1 + rT*SCPe(I)s 3.0)
SCRA(I) aAeS(SC~q(I) - F Cl))
F(l) a A!-AX(SCR(I), '(I)
SCRACI) a SCP\A(I)/F(I)

C
C SCALE PELATflE ERPOP r eWt, *k-E~. C r' AF~r' IAFIY ErQUAL.

SCRPCI) APS(C(J) - DC))/(CCI) 4 tr(I) +I.OF-3')
S C;P(T) Al'i' lCSCPBMI, SCRACI))
SCRAC1) a SCPA(I) I SCIR8(T)

C
c 14VEF'E LrLATIVE EPROF; CeNTRI'211T.V. IF Fl'.CTIN VALJF IS LESS Tr.AV.
C TI-E ' IkI' vALLE.

SC~n(j) a.25*(FScI) + r(j)) - rmIN(I)
Cp(!) .25 s SIG'C.25, SUCPIM)

SCPA(I) 2 C 'F(I)*SCIRA(I)
6 PZ APAI(3CRA(I), EPS)

EP 1PZaLr'5CL
C
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C PRINT OUT CIANOSTICS IF STEPSIZE BECOMES TOO SMALL,
IF(DT .07, CTMIN + I.OE-160TN)GO TO 40
I RITE(LOo 1003) DT, TN, DTPIN
CC 25 L s 1,N
CPD x C(L) - D(L)
CTC a EP5t'INaPCL)l(AlS(Ct) + 1.OE-30)

25 hRITECLO, 1004I) C(L), DCL), F(L)o RTAUML) CP'C, CTCv CFS(L)o
FS(L), F0(L), FMINCL)

1003 FeR'WAT('1 CHEt"EG ERRORI STEPSIZE TOO SMALL I 1, /P
I T a j PEIO.3 p t TN a 1, 025.15 #

2 1CTH!N IA1'El.3, /j,, 1LIXo 'C', 9Xp 'Cf, 9X, IF#, 6X, 'RTAL',
5K IC D DTC DF8', SX,'S,,'o Ft'IK)

1004 FORMAT(SX1 tpt2E1O.3)
CT 73'OEM*I
CT UAP'INI(CTMIN, ABS(CT))

C
C CALL ERROR DIAGNOSTIC ROLTINE

CALL CHEPEF

C CINECXI FOR C ONVERGENCE.
40 IF(EPS AT7. EPSMAX)GO TO 30

C
C END CH~ECK.

CTTARG v D7CHEM w N*TFD
ZF(DTTARG GT,. 0.0)GO TO 10
RETURN

C
C PERFORM STEPSIE MODIFICATIONS,

30 PCOUNT s RCeUNT + I
TN a TS

C
C ESTIMAIE SGRTCEPS) BY NEhTON ITERATION,

t0 RTEPS a .5*CEPS *1.0)

so R1'EPS a *tRTEPS .EPS/RTEPS)

CT a DT*(I.O/RTEPS + .005)I, CT a AtPIM CT, SNGL(TFC*(0TCHEt' TN)))
C BEGIN NEw STEP IF PREVIOLS STEP CeNVERGEC.

JFcEPS AGT, EPSMAX)GO TO ICI
CALL DFE(F, Co De SNGLCTN 4 TSTARTI)
FCOUNT a FCOUNT 4 1
GO TO 100

C
h~. C

C ENTRY~ CHMPCT (70KI)
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CDa a a a a a a a a a a a a a a a a a a * a a a a * a a a a a a a a a
CD*
Co
CO CHEVCT CTMK)
CO WRITE OUT THE VALUES OF THE VARIOUS INDICATIVE COUNTERS TIAT THE
Cc PROGRAM KEEPS.
Co
CD ARGLPENT LIST CEFINITION$
CO TMK REAL*4 A FLOATING POINT NUMBER PRINTED
CO TO IDENTIFY THE CALL.

CO OUTPLT VARIAILE DEFINITIONI
CD TMK REAL*4 FLOATING POINT IDENTIFIER.
CO FCOUNT INTEGER NUPBER Of DERIVATIVE SUBROUTINE CALLS
CD SINCE THE LAST CALL.
CD ACOUNT INTEGER NUMBER OF TIMES THE ASYMPTOTIC TREAT-
CD MENT WAS USEC SINCE THE LAST CALL.
CO RCOUNT INTEGER NUMBER OF TIMES STEPSIZE WAS REDUCED
Co SINCE LAST CALL,
CD TFCNT INTEGER TOTAL OF FCUNT TO THIS CALL.
Co TACKT INTEGER TOTAL OF ACOUNT TO THIS CALL.
CD TRCNT INTEGER TOTAL OF RCOUNT TO THIS CALL.
CD
Cc

TFCNT a TFCNT + FCOUNT
TACNT 9 TACNT + ACOUNT
TRCNT a TRCNT + RCOUNT

C
C PRINT OUT INDICATIVE COUNTERS.

RITE(LOt 1000) TMW. FCOUNTs ACOLNTv RCOUNT, TFCNT, TIACNT,
. TRCNT

1000 FORMATC' CHEMEG INDICES; TVK m , IPEIO.3#
FCOUNT, ACOUNT, RCOUNT a 't 317# 1 TOTALS: 317)

C

C RESET COUNTERS.
FCOUNT w 0
ACOUNT a 0
RCOUNT v 0
RETURN

C
C

ENTRY CHEMSP(EFSMN, EPSOX, DTMN, TNOT, PASY, TASY, PRT)
C

CO
CO CHEP$P(EPSMN, EPSMX, DTMN, TNOT, PASY, TASY, PRT)
Cz
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CO RESET ANY LOCAL CONTROL PARAPETERS IF THEIR RESPECTIVE INPUT

CO VALUES ARE GFEATEP THAN ZERO, CEFAULT VALUES ARE LSEC IF THE
CO INPUT VALUES ARE ZERO 0 LESS REPECTIVELY.
CO
CO ARGLPENT LIST CEFINITION:
cO EPS*N REAL,* WE MAX IHU RELATIVE ERROR ALLOED I
CO FOR CONVERGEt4CE OF ThE CORRECTOR STEP.
CO DEFAULT VALLEI IQE-02
CD EPSHx REAL,' THIS N6MBER PROVIDES THE BASIS FOR I
CD DECIDING iEATHER CONVERGENCE CAN 8E
CO ACHIEVED ':TH OUT ADDEO STEPSIZE
CO REDUCTION, IF EPSIEPS'IN IS GREATER

CO THAN EPSFX FURTPER REDUCTION IS
CO APPLIED.
CO DEFAULT VALUE s 10.t
CO DTFN REAL*4 THE SMALLEST STEPSIZE ALLWED, I
CO DEFAULT VALUE: l.OE.15
CD TNOT REAL*4 THE INITIAL VALLE OF THE IOPENOENT I
CO VARIABLE To
"o DEFAULT VALUE: 0,0
CO PAS REAL*4 THE PERCENTAGE OF THE EQUATIONS FOR I
Co HHICH ASYMPTOTICS WILL ALWAYS BE
CO APPLIED, EQUATIONS HZTh THE SPALLEST
CO CHARACTERISTIC STEPSIZE ARE CHOSEN
CO FIRST.
CO TASY REAL*4 ASYPPTOTICS ARE APPLIED IF T E CHAR- I
CO ACTERISTIC STEPSIZE OF AN EQUATION 28
Cc LESS THAN TASY,
CO DEFAULT VALUEt IOE-02.
CO PRT REAL*4 MMTROLS THE lUTPLT OF CHEMSP, ANY I
co NMN ZERO VALUE SUPPRESSES ALL PRINT

CO OUTPUT FROH IHIS ETR%,
CO

C

EPOPIN IOE-02
IFCEPSHN GT. 0.O)EPSHZN a EPSeN
IF(EPSMN GT, 0.050REPS a S.OaSGRT(EPSPZN)
EPSCL a I.C/EPSMIN
EPSPAX • 10.0
ZF(EPSMX .,? O.Q)EPSMAX a EPSeX

LTPIN % I.CE-15
IF(CTMN GT. O,O)DITIN a DON
TSTART a TNCT
PASYl aDc
IF(PASY ,GT. O.O)PASYI a ,GI(PASY + .5)

TCRASY a 100O
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IF(TASY .GT. 0.0)TCRASY *1.0/TASY

C PRINT NEW VALUES OF CONTROL PARAMETERS.
IFCPRT .EQ. 0.0)

* RITE(LO, 1001) EPSMN, EPSPX, CTIPN, TNOT, PASY, TASY
to0t FORPAT(' INITALIZE "CHEE' VIA -CtPEVSP"', I

EPSMN, EPSMX, VTP'N, INOT, PASY, TASY bGO)

C RETURN

ENTRY CHEMPR
C

CD*

cc CM'EPPR MAY f-' CALLED WI-N EVER AN ERROR OCCLRS TIhAT CAN EE
CD ATTPie4TED Ti IE RESULTS OF C EMEG. A PARTIAL SET OF Tt4E INTERNAL
CD VARIABLES IS PRINTED AS A CIAGNOSTIC.
CD
CD*
C

WRITECLO, 1003) DT, IN, CTTEST
CO 45 L. g 1,N
CPC a C(L) - D(L)
CTC a EPSPIK*F(L)/CAeSCCMD) * I.CE-30)

45 WRITECLO, 1004) CCL), CCL)p F(L)p RTAU(L)f CMC, OTC# CFS(L)v
* FS(L), FCCL), FMIN(L)

RETURN
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LISTING OF CHEMER

SUBROUTINE CMEPER

C IAGNOSTIC ROU71NE FOR STIFF O.C.E. SOLVER -CHEPEQ-

C
FRINT LOCI

1001 FORMATCSC/), ' LIBRARY VERSION OF -CHEVER- CALLED., /P
LSERS PAY SUPPLY THEIR OhN VERSION FOR CIAGNOSTICS.', /s

' O ARGUMENTS ARE RE0LIREC.', /0
PROGRAP OILL CONTINUE RESETTING THE STEP SIZE TO IN', /,

* IPUMS IF A NORMAL RETURN IS MADE.'# /ii
t (STOP 69) EXECUTED FROM LIBRARY VERSION OF -CHEMER-')

C
STOP 69

END

29
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These subroutines may be punched onto cards directly from

the program listing. On computers other than the TI ASC the PARAMETER

statement sould be removed and occurrences of ND in the declarations

should be replaced by a fixed point number at least as large as the

largest set of equations to be integrated. This subroutine should be

complied on the K level optimization on the ASC unless the number of

equations ex oected is small. Then the J level compilation will give

the most efficient code. No other compilation options are required

on the ASC.
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Table Bi. Mnemonic Correspondence of Mathematical Variables and

Fortran Notation in CHEMEQ

Variable Type Specification
D - DOUBLE PRECISION (Floating Point)
I - INTEGER (Standard length)
L - LOGICAL (Standard length)
R - SINGLE PRECISION (Floating Point)

Variable Origin
A - Argument
C - Common
L - Local

Subscripts indicate the variable is an array.

Entries and Arguments Purpose

CHEMEQ(DTCHEM,DFE,N,F,FMIN) Advance the rate equations the
specified interval.

CHEMCT(T) Print out indicative counters.

CHEMSP(EPSMN,EPSMX,DTMN,TNOT,PASS, Change default values of control

TASS,PRT) parameters as required.

CHEMPR Print partial set of internal
variables.

Subroutines Referenced and Purpose
Arguments

DFE(F, C, D, T) Derivative Functions Evaluator

CHEMER This routine is called when the
timestep becomes too small. Default
version should be replaced by the
users version to provide diagnostics
if error is persistent.
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Fortran Mathematical
Variable Type/Origin Variable Comments

ACOUNT I/L Index Counter; records the number
times asymptotics were

employed.

ASY(I) R/L Logical Records the location of the
equations selected for asymp-
totic treatment.

C(I) R/L Current formation rates.

CMD R/L Q.-L n. Current total rate (inter-
1 1 1 mediate variable for printing).

COR(I) R/L Multiple Usage Temporary storaqe array.

D(I) R/L L n. Current loss rates.
11

DFS(I) R/L Qi-Lini Total rate saved from the
beginning of the step.

DT R/L 6t Current timestep.

DTC R/L 6t Timestep suitable fo, stabi-
lity estimate (intermediate
variable for printing)

DTCHEM R/A 0Ztz. Chem Range of the independent
variable t.

DTMIN R/L 6tmin  Minimum timestep allowedDefault value; l.OE-15)

DTMN R/A 6t Minimum timestep. Replaces
min DTMIN if DTMN > 0.

DTTARG R/L 6t - t Intermediate variable used
Chem for end check.

DTTEST R/L 6t . Intermediate variable used to
min check DT for minimum value.

EPS R/L Max(>) The maximum value of the rela-
1 tive error. Used to check

for convergence.

EPSCL R/L 1/( Intermediate variable used to
min avoid repeated divisions.
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Fortran Mathematical
Variable Type/Origin Variable Comments

EPSINX R/L a/%. If EPS is larger than this
max mvalue the step is restarted.

(Default value; 10.)

EPSMIN R/L C The convergence criterion.
min DT for following step will be

scaled proportional to EPSMIN/
EPS. (Default value; .01)

EPSMN R/A C . The convergence criterion.
mmn Replaces EPSMIN if EPSMN > 0.

EPSMX R/A C /< Step restart criterion.
max ilnh Replaces EPSMAX if EPSMX > 0.

F(I) R/A n. The current values of the
solution to the set of equa-
tions being integrated.

FO(I) R/L n,(0) Initial values at t1 0

FCOUNT I/L Index Counter, records the number
derivative function calls.

FMIN(I) R/A ni(min) Minimum values for each
equation.

FS(I) R/L n.(0) The values of the solution
I saved from the beginning of

the current step.

I I/L Index Subscript counter.

J I/L Index DO loop subscript.

JS J/L Index Save location for specific J.

L I/L Index DO loop subscript.

LO IiA Numerical value for the
logica]. unit for the printed
output.
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Fortran Mathematical
Variable Type/Origin Variable Comments

N I/A The number of equations to be
advanced.

NASY I/L Intermediate used in the asymp-

totic selection process.

ND I/L Constant Array size specification set

by the PARAMETER Statement.
This is an ASC Fortran feature.

NDD I/L Storage location for ND. This

is ASC specific Fortran.

PASY R/A O'ASY_-OO Percentage of equations to be
treated by asymptotics. Re-
place PASYI if PASY > 0.

PASYI R/L The percentage value of the
set of equations that will
always be selected for asymp-
totics. (Default value; 0.)

PRT R/A Print control parameter. If
non-zero printer output from

entry CHEMSP sill be suppres-
sed.

RCOUNT I/L Index Counter, records the number
of times integration process
had to be restarted due to
non-convergence.

RTAU(I) R/L L, The reciprocals of the charac-
1 teristic times.

RTAUS(I) R/L L. The reciprocals of the charac-

teristic times saved from the

beginning of the current step.

RTEPS R/L /Max(o.)/E Used to estimate new time-
1 min

steps.

RTMX R/L L. Intermediate variable used to
L. max store the maximum value from

RTAUS.

SCRA(I) R/L Multiple usage Temporary storage array.

SCRB(I) R/L Multiple usage Temporary storage array.
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Fortran Mathematical
Variable Type/Origin Variable Comments

SCREPS R/L VE Square Root of EPSMIN.

SCRTCH R/L Intermediate variable used to
estimate the initial timestep.

TACNT I/L Index Counter total. Records the
total each time ACOUNT is set
to zero.

TASY R/A Asymptotic treatment selection
criterion. Replaces TCRASY
if TASY > 0.

TCRASY R/L T Asymptotic treatment selection

criterion. This parameter is
problem-dependent and the value
should be proportional to the

overall characteristic time-
step of the system of equations
being solved. (Default value;
0.1. This value is often suit-
able for high altitude atmo-
spherical and many combustion
problems.) Often it is useful
to vary this parameter as the

solution progresses.

TFCNT I/L Index Counter total. Records the
total each time FCOUNT is set
to zero.

TFD R/L Round-off parameter. Should
have a 5 in the last signifi-
cant figure for single preci-

sion floating point words.

TN D/L t Current value of the indepen-
dent variable t.

TNOT R/A t Initial value of the indepen-
0 dent variable t. Replaces

TSTART if TNOT > 0.

TRCNT I/L Counter total. Records the
total each time RCOUNT is set
to zero.
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Im

Fortran Mathematical

Variable Type/Orig_in Variable Comments

TS D/L t The value of the independent
o variable t saved from the

beginning of the current step.

TSTARI' R/L t Initial value of the indepen-
o dent variable t. (Default

value; 0)

TMI R/A Floating point number (typically

the value of Time) printed to

identify the call to CHEMCT.

APPENDIX C

This example involves the integration of seven rate equations

which describe the time evolution of an atmospheric chemical relaxa-

tion test problem with cesium and cesium ions. This particular set of

rate equations which was originally suggested by D. Edelson of Bell

Laboratories is considered stiff and not well suited for numerical

integration by classical methods.

The sample program listed in this section is designed to deter-

mine the efficiency of various stiff ordinary differential equation

solvers on this test problem. In this example CHEMEQ is used. Effi-

ciency is determined by comparing the results at the end of the inte-

gration interval with known values and the computer time required to

obtain these results or various values of the convergence parameter

EPS.
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Table Cl. A List of the Seven Species Together with Their
Initial and Accepted Final Concentrations for the
Test Problem

Number Densities

Initial Final
i Species yip cm- 3  Yi' cm-3

1 e- 1.0 X 102 4.9657897283 x 104
2 02- 5.2 X 102 2.5913949444 x 104
3 Cs+  6.2 x 102 7.5571846728 X 1(04

4 Cs 1.0 X 1012 1.5319405460 x 103

5 CsO 2  0 1.000 X 1012
6 N2  1.4 x 1015 1.400 x 1015

7 02 3.6 X 1014 3.590 X 1014

Table C2. A List of the Seven Reactions and Reaction Rates
Through which the Seven Species of the Test
Problem Interact

Rate constant or
No. Reaction frequency

1 02- + Cs + 
- Cs + 02 5 X l0 - 8 cm 3 s- 1

2 Cs+ + e- Cs + hv 1 X 10- 12 cm3 s-

3 Cs + hv Cs + + e- 3.24 x 10- 3 s-1

4 02- + hv 02 + e- 4 x 10- 1 s- 1

5a 0 2 + Cs + M CsO2 + M 1 X 10 - 3 1 cm6 s-1

6 02 + e- + 02 + 02- + 02 1.24 X 10- 30 cm6 s-1

7 0 2 + e- + N2  0+N 2  1 X 10- 31 cm6 s- 1

M = [CS + LCsO 2 + LN + [O j.
2 2 2

In the following listing TACSR is the main program which provides

the logic and overall control. Initialization and output of results

takes place here. CSDFE is the derivative function evaluator for the

text problem. Results for nine values of the convergence parameter

EPS are printed at the end of the section.
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PROGRAP TACS

C THIS I THE EXECUTIVE PROGRAN TPAT PROVIDES TPE LOGIC NESSICARY
C 7l ACVANCE A REACTIVE SEVEN SPECIES TEST PROBLEM FOR AN EVALUATION
C OF ThE INTEGFATION METHOC FOR VARIOUS VALUES OF THE CONVERGENCE
C PARAPETER. IN THIS EXAMPLE "CHEPEQ" hILL BE EMPLOYED,
C
C PROGFAP SPECIFICATIONS.
C

REAL*$ DSEC
C

REAL YCIO)o YFCIC), YMINCIO). YI(10)v EPSIL(10), EPS(1S)
C

INTEGER spSYm(1O)
C

EXTERNAL CSCFE
C

DATA YPIN/10*1.OE-OU/o MXCASE/9/
DATA SPSYHt'02-I, 'CS+I, 'CS, ICS02', '02', IN21o 'NEI/
CATA EPS/.11 .05. .l1 .005# .001, .0005, .0001, .0oo05,

* ocol/
C
1000. FORPATCO1CASE NO. ', 15, 1 PARAPETERSI', /

CONVERGENCE PARAPETER EPS a , 1PEO.3, It
INNER LOOP LENGTHI', IS)

1001 FORMATCle I SPECIE Y - INITAL Y - FINAL to
0V * SCLLTION REL ERR')

1002 FORPATC5*, A4, IP3E15.6, E1O.3)
1003 FORNATC/, I T * INITIAL s (I' IPEO.3# ') T - FINAL a (o

• EIO.3, '})

1004 FORMAT(I# INTEGRATION STATISTICS)')
1005 FORMAT(' CPU TIME LSED FOR INTEGRATION)'# IPEIQ.93

I SEC,o CFU TIME NORMALIZECpi' E10.3)
100 FORMATOI SLO OF THE RELATIVE ERRORS SGUARED; It IPEI0.3)
1007 FORMATCt)

C
C
C INITIALIZE CONTROL PARAMETERS,
C
C "TSCALE" IS A NORMILIZATION FACTOR USED TO COMPARE EFFICIENCY OF
C INTEGRATION COCES FROM DIFFERENT COMPUTER INSTALATIONSo "TSCALE"
C PAY eE CETERPINED BY TIMING A TEST CODE ON ALL INSTALATIONS
C INVOLVED.

TSCALE w 1.0
C
C SET INNER LOOP LENGTP. SEE COMPENTS ELOW FOR DEFINITION,

NLPk a 3
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c SET THE TOTAL 66MSER OF SPECIES ON3S AND THE NUMBER TO BE
C INTEGRATED "KNO.

thS a 7
NA u S

C
C "TI* - INITIAL TIME. "TF" - FINAL TIFE.

TI 0 0.0
TF s 100C.C
CELTAT a WT * IMNLP

C

C 02.

YFdl) 1 -9,~139492061D+04
C
C CS+

YZC2) 4 .400E4 02
YFC2) *7.557184603o000

C CS
YIC3) 1000E+12
YFC3) * 1531q405172a0,O3

C
C C502

YIM4 1.000E-30

YF(PJ) *q.9qqqa351-d0,t1
C
C 02

YI(s) a 3 , 0 DE +14
yp(S) g 3.5q0000O0CS1D,14

C
C N2

YI(b) S 14'0OE415

YF(6) 1,400000000OCOC*15

C

C LOOP OVER THE TEST CASES.
CO 30 ICASE a 1,PXCASE
PRINT 1000, ICASE, EP$(ICASE)* INLP
CALL CIEOSP(EPSCICASE)t 0., 0., TI. 0., 10.0, 0.)
CPLT * 0.
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C
C RESET 'Y" TO INITIAL VAL6ES "YI",

CO 35 3 *s 1DNS
35 v(I, 3yil)

C
C SET TIPER.

CALL SECONC(1, DSEC)
C
C INNER LOOP TO DETERMINE OVERHEAD OR RELATIVE STARTING EFFECIENCY
C OF rTEGRATION SCHEME BEING TESTED.

DO S ISTEP a t#INLP
C
C CALL INTEGRATOR.

CALL CHEPEGCOELTAT# CSCFE* NAP Ye Yl'IN)
5 CONTINUE

C
C CALCLLATE CPL 7IME USED IN THE INTEGRATION PROCESS,

CA.LL SECONCCOs DSEC)
CPLT *CPUT + DSEC
THORM CPLT.#TSCALE

C
C RESET ELECTRON DENSITY.

Y(7) a Y(2) - Y(1)
C
C CALCLLATE RELATIVE ERROR.

CO to I a1,NS
to EPSILCI) uA5SCYCI) - YFCI))/AMINtCY(I) s YF(I))

$UP 8 0.0
CO 25S 1.NS0

25 SUP a $UP 4 EPSILCI)0*2

C PRINT RESULTS.
PRINT 1oc0e TIP TF
PRINT 1601
CO 15 Vv J ,N3

1s PRINT 1002, SPSYP'CI), YICI)p YFCI)# YCI)# EPSILCI)
PRINT 1004
PRINT 1006, SUM
PRINT 1005, CPUT, TNORP
PRINT 1C0
CALL CHEP'CTCTF)

30 CONTINUE
STOP 6q

END
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!V

SUBROUTINE C6CFE(Yo C# D, 7)

CD
cc C CSDFE(Y, C, C# T)

CD
CD CESCFZPTIONi
CD DERIVATIVE FLNCTION EVALLATORCCFE) FOR AN ATMOSPHERIC CHEmICAL
CD RELAXATION TEST PROBLEP INVOLVING CESIUM AND CESIUM IONS, FORMAT-
CD ION AND LOSS RATES ARE CALCULATED FOR THIS SET OF "STIFF ORDINARY
Co DIFFERENTIAL EGUATIONS" THAT WAS SLGGESTED BY BY %, EDELSON OF
Cc BELL LABORATCRIES.
CD
CD ARGUmENT LIST CEFINITZON3S
Cc Y(I) R*a CURRENT VALUES OF THE FUNCTIONS PLUS THE IO
Cc EXTRA DATA AT THE END OF THE ARRAY THAT MAY BE
CD PASSED BACK AND FORTH BETWEEN *CSDFE" AND THE
CD MAIN PROGRAM, LOCATIONS IN Y(I) WHICH REPRESENT
CO THE FUNCTIONS BEING ADVANCEC SHOULD NOT BE
CD TAMPERED WITH HERE,
Cc C(C) R*L TOTAL FORMATION RATES. I
CD C(I) R,4 TOTAL LOSS RATES. I
CO T R*4 THE VALUE OF THE INDEPENDENT VARIABLE. I
CDCO

C
C LOCAL SPECIFICATIONS.
C ...., 0-0-00..em

REAL NE, N2
REAL YCI), C(I), D(1)

C

C UTILIZE LOCAL STORAGE FOR VARIeLES.
02P u V(f)
CSP U Y(2)
CS UY(3)

CSO2 Y(L1)
02 U Y(5)
N2 a Y(6)

C
C CALCLLATE ELECTRON DENSITY FOR LOCAL USE AND TRANSMISSION BACK TO
C THE PAIN PROGRAM VIA Y(7). HOWEVER IN THIS CASE THIS VALUE SHOULD
C NOT Er TRUSTED SINCE "CHEMGE" HILL NOT CALL THE DFE" WITH THE
C LATEST FUNCTIaN VALUES AFTER THE FINAL STEP HAS CONVERGED, Y(T)
C WILL BE ONE ITERATION BEhIND IN THIS CASE. Y(7) AND Y(6) ARE
C EXAMPLES THO, OF HOW DATA PAY BE TRANSFERED BETWEEN THE "CFEN AND
C THE PAIN PROGRAM.

NE a APAXI(CSP - 02M, 0.0)
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Y(7) *NE

CR2 a 1,COE.12*CSP#NE
CR3 a 3.aMEmo3*CS
CR4 a 4.QOE.O1*02M
CRS a 1.COE-31a02*CS*CC3 + CSO2 $N2 02)
CRC v 1.Zi4E-30*e2.O2*NE
CR7 a I.COE.3t*O2.IN2*NE

C
C CALCLLATE TOTAL FORMATION RATES CCCI)) AND TOTAL LOSS RATES (D(l))
C FOR EACH' SPECIESe

C O

CCI) a CP6 + CR7
CC1) s CA1 + CR0

C
C CS+

C(2) m CR3
tf2) a CA1 + CR2

c C3 C(3) a CA1 * CR2
C(3) 8 CR3 4 CRS

C CSO2
CW, 8 CPS

C
C 02

C(S) a CR1 + CR4
C(S) a CR5 + CR6 # CR7

RETURN

42



.

C C

U%'

o 0.

00" n, -

o Co

4L " o 0
IC g IL1.b

w _Su .0w u -J ;

0 W - U' 40

o 0o

as. 2.. w Z. 4 w

O C C O C C x C C C 0 0 43 X 9 -
hiS SLA S 3. 4451 1 w 2.W

hiuIhhihhiJ hiihhihh43



ot

o 
0 o

Ix

on 0

a4 0 jz - t

o 0-
CL 0)nM 4 ra I

C) & . D.
ow IninI vw: w:W:o.-: o

a~ mCw-.C

- " .-
o fmta w -a 0 S.o4- 2 0- W t fwaffo - - -0 w t----- -4

C W ww w S

0' P.
"A A. 0u w

w 'o M 0t CaM

ki 6 -
S) M 4 V 0 2!X bI

9 Pi5' 0 0itC p.. V - i

9 0 0 0 0 0 - - 9 C0. S~~e.044

L A 
00000 .



w 0 co

C, C- -in

oL X

0.1 WW E -W

0 -3 0 W=04D-
: wo w

00 OD c m- 9=C&C
o 0.0,0 C.

M M

oL .4 .u . .4 .

O 000000a 0 0 -- X0 00 00 0 xV V

A Li Li

CL i.0 A. - 0E 0 w. 1

u@ '..0 a a IL z m W CL -

-, ~ ~ ~ ~ ~ ~ ~ ~ C -LM-iii-~ Z; 0 .i-iiiiiii 0

o G. - neo .u 1 2 V.00a0 0 ; 4

10 01 WIZ

M ooZ- a a a 00..)-01Li
*Q~ aI z a I x . - a I .n r C= ,
Li-- WIU u 

4
LWiJih-"iL i W VO U4iiiiiii W

r4 E aO SE. i £ VI00~i L45 L



VV

a 0u 0 0q

:tu j 0 a Wf ,f >f

ww =00

IV .0 Cl

U-5-3

0 01 to-

o Z 0IC

.0 - - .0

.40 . .0 5

o 0 0 0
CD W4-. aJ 0 Go to-

46 V: W: V:6 ia a
aa wm

MAI It z us0.

:aO C~ "6 u JUL0AOA pu a II

00 00 0 -" *c 0 _00: 000 0 M
mai s, IL K dh uii

I..",ihU~ab 0 iijkiamama
& aOOOO.L;0 C 0 a e~yui o

1 ai La U maa W

WA m .0 Z;
CO uitI-0mk a " O P -. M z- z

WN00 0- 40 W do00.0 60 6 .a
w a 'j wcLj z i 0o 92 5)

0b-d ] .0 MO~iP0 Li W Mt~ ka I
: .~m 0 0.0. M .- P a. 02 b, P S.0IO0.0 I

hbi 0 O t 0 0 -n 0. E i Z- W 00~~q00~~~~~~~a u 00M C 0 . 0 0 0

0 0 *U*M5U50 53 3 0 0 ~t5U.~tW*46.


